HW05 - Buffers, Titrations, and Polyprotics

Question 1

1 pts

When an acid and base neutralize each other, the products are generally water and...

- a colloid.
- a salt.
- a gel.
- an ion.

Question 2 1 pts How many moles of Ca(OH)2 are needed to neutralize three moles of HCI? 2 2 1 1 1.5 3 3

Question 3

An aqueous solution is prepared with 2 moles of HCl and 1 mole of $Ca(OH)_2$. The resulting solution contains mainly...

 \bigcirc water, Cl⁻ ions, and Ca²⁺ ions.

 \bigcirc water, Cl⁻ ions, H⁺ ions, and Ca²⁺ ions.

 \bigcirc water, Cl⁻ ions, H⁺ ions, OH⁻ ions, and Ca²⁺ ions.

 $\bigcirc\,$ water, Cl⁻ ions, OH⁻ ions, and Ca²⁺ ions.

Question 4

Identify the products of the following chemical reaction: 3LiOH + $H_3PO_4 \longrightarrow$

- 3H⁺ + 3O₂ + H₃Li₃
- Li₃PO₄ + 3H₂O
- Li₃P + 2H₂O + H₃O₅
- 3LiH + (OH)₃PO₄

Question 5

Identify the products of the following chemical reaction:
$Sr(OH)_2 + 2HNO_3 \longrightarrow$

○ Sr(NO₃)₂ + 2H₂O

 \bigcirc SrNO₃ + H₂O

Sr(NO₂)₂ + 2H₂O₂

 \bigcirc SrH₂ + HNO₅

Question 6

Aqueous ammonia can be used to neutralize sulfuric acid and nitric acid to produce two salts extensively used as fertilizers. They are...

 \bigcirc NH₄SO₄ and NH₄NO₃, respectively

cyanamide and cellulose nitrate, respectively

 \bigcirc (NH₄)₂SO₄ and NH₄NO₃, respectively

 \bigcirc NH₄SO₃ and NH₄OH, respetively

Question 7

1 pts

Identify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid.

optassium amide

optassium formate

otassium acetate

O potassium cyanide

1 pts

1 pts

1 pts

1 pts

1 pts

1 pts

1 pts

What is the pH of an aqueous solution that is 0.018 M $C_6H_5NH_2$ (K_b = 4.3x10⁻¹⁰) and 0.12 M $C_6H_5NH_3CI$?

0 4.02				
0 4.02	0 4.63			
	0 3.81			
0 2.87	0 4.02			
	0 2.87			

Question 9

A buffer solution is made by dissolving 0.45 moles of a weak acid (HA) and 0.33 moles of KOH into 710 mL of solution. What is the pH of this buffer? K_a = 6x10⁻⁶ for HA. 13.23 5.22 5.66 8.34

Question 10

Which one of the following combinations is NOT a buffer solution?

○ CH₃COOH and NaCH₃COO

O HBr and KBr

○ NH₃ and (NH₄)₂SO₄

HCN and NaCN

Question 11

Which of the following mixtures will be a buffer when dissolved in a liter of water?

O 0.1 mol Ca(OH)₂ and 0.3 mol HI

0.2 mol HF and 0.1 mol NaOH

0.2 mol HBr and 0.1 mol NaOH

0.3 mol NaCl and 0.3 mol HCl

Question 12

1 pts

1 pts

What is the pH of a solution which is 0.600 M in dimethylamine ((CH₃)₂NH) and 0.400 M in dimethylamine hydrochloride ((CH₃)₂NH₂Cl)? K_b for dimethylamine = 7.4×10^{-4} .

0 10.87

0 11.05

0 10.78

0 11.21

Question 13

What would be the final pH if 0.0100 moles of solid NaOH were added to 100mL of a buffer solution containing 0.600 molar formic acid (ionization constant = 1.8×10^{-4}) and 0.300 M sodium formate?

0 3.44	
0 3.65	
0 3.84	
0 4.05	

Question 141 ptsA buffer was prepared by mixing 0.200 moles of ammonia ($K_b = 1.8 \times 10^{-5}$) and 0.200
moles of ammonium chloride to form an aqueous solution with a total volume of 500 mL.
250 mL of the buffer was added to 50.0 mL of 1.00 M HCl. What is the pH of this second
solution?

0 8.78			
0 8.18			
0 8.38			
0 8.53			

Question 15

1 pts

A solution is 0.30 M in NH₃. What concentration of NH₄Cl would be required to achieve a buffer solution with a final pH of 9.0? $K_b = 1.8 \times 10^{-5}$ for NH₃.

- 0.10 M
- O 0.45 M
- O 0.54 M
- -
- 0.32 M

Question 16

1 pts

What is the pH at the half-stoichiometric point for the titration of 0.22 M HNO₂(aq) with 0.1 M KOH(aq)? For HNO₂, $K_a = 4.3 \times 10^{-4}$.

0 3.37

- 0 2.31
- 0 2.01
- 7.00

Question 17

1 pts

For the titration of 50.0 mL of 0.020 M aqueous salicylic acid with 0.020 M KOH (aq), calculate the pH after the addition of 55.0 mL of the base. For salicylic acid, $pK_a = 2.97$.

0 7.00

0 11.26

0 10.98

0 11.02

Question 18

1 pts

Consider the titration of 50.0 mL of 0.0200 M HCIO(aq) with 0.100 M NaOH(aq). What is the formula of the main species in the solution after the addition of 10.0 mL of base?

- O CIO⁻

- 🔿 NaOH

Question 19

50.0 mL of 0.0018 M aniline (a weak base) is titrated with 0.0048 M HNO₃. How many mL of the acid are required to reach the equivalence point?

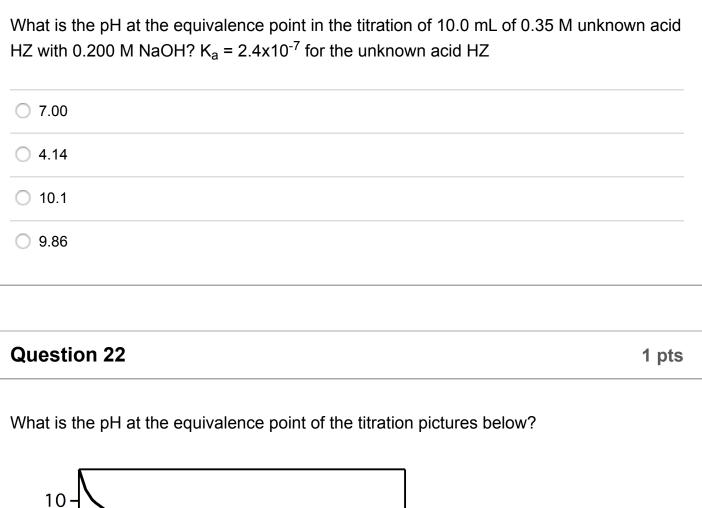
🔘 18.8 mL

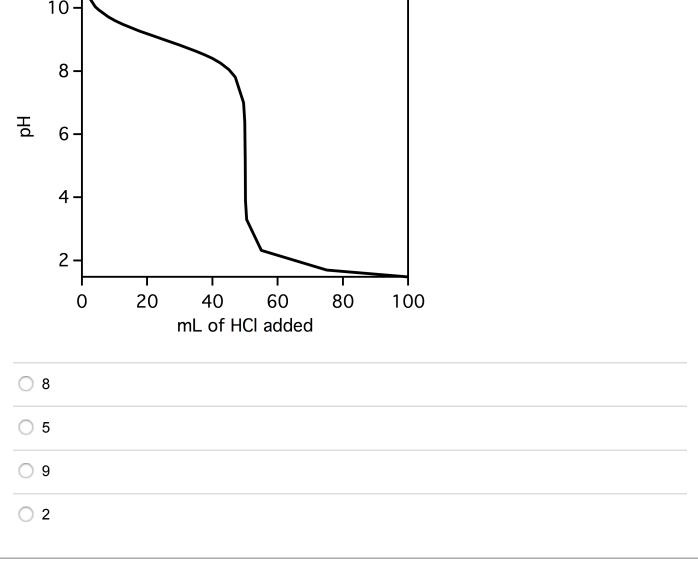
🔘 133 mL

 \bigcirc This is a bad titration as HNO₃ is not a strong acid.

🔾 4.21 mL

Question 20


When we titrate a weak base with a strong acid, the pH at the equivalence point will be...


It is impossible to know unless we are given the K_b of the weak base.
 pH < 7
 pH > 7

Question 21

O pH = 0

1 pts

1 pts

1 pts

Question 23

1 pts

Look at the titration diagram in the question above. What type of titration is occurring?

- a weak base titrated with a weak acid
- a weak base titrated with a strong acid
- a strong base titrated with a weak acid
- a strong base titrated with a strong acid

Question 24

1 pts

1 pts

2 pts

The acid form of an indicator is yellow and its anion is blue. The K_a of this indicator is 10^{-5} . What will be the approximate pH range over which this indicator changes color?

○ 6 < pH < 8

○ 3 < pH < 5

○ 4 < pH < 6

○ 5 < pH < 7

Question 25

The unionized form of an acid indicator is yellow and its anion is blue. The K_a of this indicator is 10⁻⁵. What will be the color of the indicator in a solution of pH 3?

- O yellow
- O orange
- O blue
- O green

Question 26

Aspartic acid is a polypeptide side chain found in proteins. The pK_a of aspartic acid is 3.86. If this polypeptide were in an aqueous solution with a pH of 7, the side chain would have what charge?

- O neutral
- positive
- negative

O there is no way to know

Question 27

1 pts

Blood contains a buffer of carbonic acid (H_2CO_3) and hydrogen carbonate ion (HCO_3^{-}) that keeps the pH at a relatively stable 7.40. What is the ratio of [HCO_3^{-}] / [H_2CO_3] in blood? $K_{a1} = 4.30 \times 10^{-7}$ for H_2CO_3 . (Hint: Assume [CO_3^{2-}] = 0)

- ◯ 3.98 x 10⁻⁸
- 0 10.8
- 1.71 x 10⁻¹⁴
- 0.0926

Question 28

2 pts

proton is 1.1×10^{-2} . What would be the pH of a solution that is $0.100 \text{ M H}_2\text{SO}_4$? Account for the ionization of both protons.					
0.963					
0 1.00					
0.955					
2.05					

 H_2SO_4 is a strong acid because the first proton ionizes 100%. The K_a of the second